Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Explore les méthodes de régularisation dans les réseaux neuronaux, en soulignant l'importance des bases d'entraînement et de validation pour éviter les surajustements.
Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.
Explore les méthodes du noyau dans l'apprentissage automatique, en mettant l'accent sur leur application dans les tâches de régression et la prévention du surajustement.
Couvre le surajustement, la régularisation et la validation croisée dans l'apprentissage des machines, explorant le réglage des courbes polynômes, l'expansion des fonctionnalités, les fonctions du noyau et la sélection des modèles.
Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.
Explique la rétropropagation dans les réseaux neuronaux, la mise à jour des poids en fonction des erreurs et l'évaluation des réseaux par le biais de pertes d'entraînement et de tests.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.
Couvre la prédiction du contact avec les protéines à l'aide des modèles Potts et des méthodes de pseudo-probabilité, en comparant différentes approches pour la prédiction du contact dans les protéines.