Concept

Grade (angle)

Concepts associés (16)
Degré (angle)
vignette|Un angle de 45 degrés. Le degré d'angle (ou d'arc), ou simplement degré (symbole : °), est une unité d'angle, définie comme la trois-cent-soixantième partie d'un angle plein (1/360 tour). Un degré est équivalent à π/180 radians. Lorsque cet angle est en rapport avec un méridien de référence, il indique un emplacement le long d'un grand cercle d'une sphère, comme la Terre (voir Coordonnées géographiques), Mars ou la sphère céleste.
Tour (angle)
One turn (symbol tr or pla) is a unit of plane angle measurement equal to 2π radians, 360 degrees or 400 gradians. Thus it is the angular measure subtended by a complete circle at its center. Subdivisions of a turn include half-turns and quarter-turns, spanning a semicircle and a right angle, respectively; metric prefixes can also be used as in, e.g., centiturns (ctr), milliturns (mtr), etc. As an angular unit, one turn also corresponds to one cycle (symbol cyc or c) or to one revolution (symbol rev or r).
Milliradian
A milliradian (SI-symbol mrad, sometimes also abbreviated mil) is an SI derived unit for angular measurement which is defined as a thousandth of a radian (0.001 radian). Milliradians are used in adjustment of firearm sights by adjusting the angle of the sight compared to the barrel (up, down, left, or right). Milliradians are also used for comparing shot groupings, or to compare the difficulty of hitting different sized shooting targets at different distances.
Radian
Le radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international. Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle. Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson, les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.
Sine and cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Trigonométrie
vignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Longueur d'un arc
thumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
Métrification
thumb|right|400px|Conversion au système métrique dans le monde par année. 400px|thumb|right|Pays par le statut de métrification actuelle : La métrification est l'opération par laquelle un pays, ou toute autre organisation, effectue une transition de son système d'unités de mesures vers le Système international d'unités. De nombreuses unités de mesure ont été utilisées régionalement en réponse aux besoins liés à une activité humaine. Un système d’unités s'est ainsi développé dans les Îles Britanniques.
Angle droit
Dans le plan euclidien, deux droites sécantes définissent quatre angles deux à deux égaux. Lorsque ces quatre angles sont égaux, chacun forme un angle droit. Les droites sont alors dites perpendiculaires. Le terme angle droit est un calque du latin angulus rectus : rectus signifie « debout », ce qui renvoie à l'image d'une perpendiculaire à une ligne horizontale. Euclide écrivait, au , dans ses Éléments, livre I, Définition 10 : Un angle droit est donc un quart de tour, ou encore la moitié d'un angle plat.
Sous-unités du degré
Les sous-unités du degré sont des unités d'angle, c'est-à-dire des mesures d'angle, qui permettent davantage de précision que le degré. Il y a cohabitation entre le système sexagésimal (en base 60, connu sous le nom DMS pour « Degré-Minute-Seconde ») et le système décimal (en base dix, connu sous le nom DD pour « degré décimal ») pour la construction des sous-unités. Ces unités ont été inventées par les Babyloniens.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.