Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Forme de KillingDans la théorie des algèbres de Lie, la forme de Killing est une forme bilinéaire symétrique naturellement associée à toute algèbre de Lie. Elle reflète un certain nombre de propriétés des algèbres de Lie (semi-simplicité, résolubilité...). Soit g une K-algèbre de Lie, où K désigne un corps (commutatif). La représentation adjointe définit pour tout vecteur x de g un endomorphisme K-linéaire ad(x) du K-espace vectoriel g : Si g est de dimension finie, il existe une forme bilinéaire symétrique B définie par : où Tr désigne l'opérateur trace.
Opérateur de CasimirEn mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
3D rotation groupIn mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .