Problème bien poséLe concept mathématique de problème bien posé provient d'une définition de Hadamard qui pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe ; La solution est unique ; La solution dépend de façon continue des données dans le cadre d’une topologie raisonnable. Le problème de Dirichlet pour l’équation de Laplace et l’équation de la chaleur avec spécification de conditions initiales sont des formulations bien posées.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Imagerie médicaleL'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Géophysique appliquéevignette|Les géophysiciens doivent souvent installer de l'équipement électronique robuste sur le terrain. Ici, un numériseur de données sismiques et un disque dur reliés par un câblage SCSI de terrain. La , aussi appelée , est la branche de la géophysique qui utilise des appareils électroniques pour mesurer les propriétés physiques du sous-sol terrestre, telles que la densité, la résistivité électrique ou la perméabilité magnétique.
DéconvolutionEn mathématiques, la déconvolution est un procédé algorithmique destiné à inverser les effets de la convolution. Le concept de déconvolution est largement utilisé en traitement du signal et , notamment en microscopie et astronomie. Le problème est de déterminer la solution f d'une équation de la forme : On note ici par h un signal tel qu'il est acquis et f le signal que l'on désire estimer ou restaurer, mais qui a été convolué par une réponse impulsionnelle g lors de l'acquisition.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Théorème de RadonLe théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage.
Imagerie sismiqueL'imagerie sismique est une méthode géophysique d'observation de la subsurface. Elle permet de visualiser les structures géologiques en profondeur grâce à l'analyse des échos d'ondes sismiques. Elle ne doit pas être confondue avec la sismologie, qui est l'étude des ondes sismiques et des séismes pour eux-mêmes. Les ondes sismiques peuvent être d'origines naturelles (séisme) ou artificielles. Le signal initial est généralement issu d'une source prévue pour l'imagerie (camion vibreur, explosif, canon à air, etc.