Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'algorithme Kalman Predictor étendu et le filtre Kalman linéaire pour les systèmes de contrôle multivariables, en discutant des défis et des applications.
Explore l'estimation du maximum de vraisemblance dans les modèles linéaires, couvrant le bruit gaussien, l'estimation de la covariance et les machines vectorielles de support pour les problèmes de classification.
Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.
Explore les épidémies dans les données de réseau, couvrant le modèle SIR, le rapport de reproduction de base, la percolation, les réseaux dirigés et l'estimation de la probabilité maximale.
Plonge dans les concepts fondamentaux de la science des données, en mettant l'accent sur la théorie, les liens entre les sujets et les défis dans les techniques de navigation.