A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into a sequence of simpler subproblems, as Bellman's “principle of optimality" prescribes.
In game theory, an extensive-form game is a specification of a game allowing (as the name suggests) for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the (possibly imperfect) information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".
vignette| Les échecs sont un exemple de jeu séquentiel. En théorie des jeux, un jeu séquentiel est un jeu où les joueurs choisissent leur actions à tour de rôle. Pour qu'un jeu soit séquentiel il faut que certaines informations sur les choix d'un joueur à son tour soient connues par les joueurs suivants avant qu'ils ne fassent eux-mêmes leur choix; sans cela, le tour du premier joueur n'aurait pas d'effet sur la stratégie des suivants. Les jeux séquentiels sont donc régis par l'axe du temps, et peuvent être représentés sous forme d'arbres de décision.
In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game (called a stage game). The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.
vignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Une connaissance commune est une connaissance ou un savoir partagé par un groupe d'agents où tous savent que tous la partagent, et tous savent que tous savent que tous la partagent etc. Ce concept a d'abord été introduit par le philosophe David Kellogg Lewis dans son maître ouvrage Convention (1969) puis formalisé mathématiquement en théorie ensembliste par Robert Aumann qui en a aussi développé l'intérêt en économie et théorie des jeux, notamment dans le cadre de la « théorie de la décision interactive » pour lequel il fut récompensé du « Prix Nobel » d'économie en 2005.
La théorie des jeux combinatoires est une théorie mathématique qui étudie les jeux à deux joueurs comportant un concept de position, et où les joueurs jouent à tour de rôle un coup d'une façon définie par les règles, dans le but d'atteindre une certaine condition de victoire. La théorie des jeux combinatoires a pour objet les jeux à information complète où le hasard n'intervient pas, comme les échecs, les dames ou le jeu de go.
Un jeu de somme nulle est un jeu où la somme des gains et des pertes de tous les joueurs est égale à 0. Cela signifie donc que le gain de l'un constitue obligatoirement une perte pour l'autre. Par exemple si l'on définit le gain d'une partie d'échecs comme 1 si on gagne, 0 si la partie est nulle et -1 si on perd, le jeu d'échecs est un jeu à somme nulle. En économie, cette notion simplificatrice est importante : les jeux à somme nulle correspondent à l'absence de production ou de destruction de produits.
En théorie des jeux, un arbre de jeu est un arbre (au sens de la théorie des graphes) dont les nœuds sont des positions dans un jeu et dont les arêtes sont des mouvements. L'arbre de jeu complet est l'arbre de jeu commençant à la position initiale et contenant tous les mouvements possibles depuis chaque position. vignette| Les deux premiers de l'arbre de jeu pour le tic-tac-toe. Le diagramme ci-contre montre comment coder dans une représentation arborescente le premier tour de jeu au tic-tac-toe : ce sont les deux premiers niveaux dans l'arborescence, la racine représentant la position initiale (une grille vide, en l'occurrence).
Le dilemme du prisonnier, énoncé en 1950 par Albert W. Tucker à Princeton, caractérise en théorie des jeux une situation où deux joueurs auraient intérêt à coopérer, mais où, en l'absence de communication entre les deux joueurs, chacun choisira de trahir l'autre si le jeu n'est joué qu'une fois. La raison est que si l'un coopère et que l'autre trahit, le coopérateur est fortement pénalisé. Pourtant, si les deux joueurs trahissent, le résultat leur est moins favorable que si les deux avaient choisi de coopérer.