Nahm equationsIn differential geometry and gauge theory, the Nahm equations are a system of ordinary differential equations introduced by Werner Nahm in the context of the Nahm transform – an alternative to Ward's twistor construction of monopoles. The Nahm equations are formally analogous to the algebraic equations in the ADHM construction of instantons, where finite order matrices are replaced by differential operators. Deep study of the Nahm equations was carried out by Nigel Hitchin and Simon Donaldson.
Hermann WeylHermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre.
Conjecture de HodgeLa conjecture de Hodge est une des grandes conjectures de la géométrie algébrique. Elle établit un lien entre la topologie algébrique d'une variété algébrique complexe non singulière et sa géométrie décrite par des équations polynomiales qui définissent des sous-variétés. Elle provient d'un résultat du mathématicien W. V. D. Hodge qui, entre 1930 et 1940, a enrichi la description de la cohomologie de De Rham afin d'y inclure des structures présentes dans le cas des variétés algébriques (qui peuvent s'étendre à d'autres cas).
C. T. C. WallCharles Terence Clegg (« Terry ») Wall, né le à Bristol (Angleterre), est un mathématicien britannique. Wall fait ses études au Marlborough College dans le comté de Wiltshire, puis au Trinity College de Cambridge, dont il est Fellow de 1959 à 1964. Il y soutient en 1960 une thèse dirigée par Christopher Zeeman (et Frank Adams). En 1960-61, il est à l'Institute for Advanced Study. En 1964, il a été professeur à Oxford (et Fellow du St Catherine's College). Il est professeur émérite de l'université de Liverpool, où il est nommé en 1965.
William Vallance Douglas HodgeWilliam Vallance Douglas Hodge ( - ) est un mathématicien écossais. Il fut l'élève d'Edmund Taylor Whittaker. Il est notamment connu pour ses travaux reliant la géométrie différentielle (entre autres la dualité de Hodge) et la géométrie algébrique. Il formulé la conjecture qui porte son nom. 1936 : Prix Adams 1952 : Prix Senior Berwick 1957 : Médaille royale 1959 : Médaille De Morgan 1974 : Médaille Copley Théorème de Helmholtz-Hodge Théorie de Hodge Catégorie:Mathématicien écossais du XXe siècle Catégorie:
Genus of a multiplicative sequenceIn mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.
London Mathematical SocietyThe London Mathematical Society (LMS) est la plus importante société savante de mathématiques en Angleterre. La société est fondée le , son premier président est Auguste De Morgan. Les premières réunions se tiennent à l'University College de Londres mais la société est rapidement déplacée à Burlington House, Piccadilly. Les activités initiales comprennent des entretiens et la publication d'un journal. La LMS est utilisée comme modèle pour créer l'American Mathematical Society en 1888.
Théorème de KünnethEn mathématiques, le théorème de Künneth est un résultat de topologie algébrique qui décrit l'homologie singulière du produit X × Y de deux espaces topologiques, en termes de groupes homologiques singuliers Hi(X, R) et Hj(Y, R). Il tient son nom du mathématicien allemand Hermann Künneth. Si R est supposé être un corps commutatif, alors le résultat est une approximation du cas général : en effet, on n'a plus besoin d'invoquer le foncteur Tor.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.
Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).