Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Loi bêta-binomiale négativeEn théorie des probabilités et en statistique, la loi bêta-binomiale négative est la loi de probabilité discrète d'une variable aléatoire X égale au nombre d'échecs nécessaires pour obtenir n succès dans une suite d'épreuves de Bernoulli où la probabilité p du succès est une variable aléatoire de loi bêta. La loi est alors une loi mélangée. Cette loi a également été appelée la loi inverse Markov-Pólya et la loi de Waring généralisée. Une version avec dérive de cette loi a été appelée la loi bêta-Pascal.
An Essay towards solving a Problem in the Doctrine of ChancesAn Essay towards solving a Problem in the Doctrine of Chances is a work on the mathematical theory of probability by Thomas Bayes, published in 1763, two years after its author's death, and containing multiple amendments and additions due to his friend Richard Price. The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre.
Écart moyenEn statistique, et en probabilités, l'écart moyen est une mesure de la dispersion autour de la moyenne. Il se calcule ainsi : dans le cas d'une série discrète non triée, écart moyen = ; dans le cas d'une série discrète regroupée, écart moyen = ; dans le cas d'une série continue, écart moyen = . Pour une variable aléatoire réelle , l'écart moyen est la moyenne des écarts (absolus) à la moyenne : . On précise parfois écart moyen absolu, pour le différentier de l'écart moyen algébrique , lequel est nul.
Estimateur de Laplace–BayesEn théorie des probabilités et en statistiques, l'estimateur de Laplace–Bayes (ou règle de succession de Laplace) est une formule permettant de donner une approximation du terme a posteriori de la formule de Bayes. Elle a été introduite au siècle pour répondre au problème : quelle la probabilité que le Soleil se lève demain ? Soit des variables aléatoires indépendantes à valeur binaire (0 ou 1). On suppose qu'elles suivent toutes une distribution de Bernouilli de même paramètre p.
Probability integral transformIn probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples.
LogitLa fonction logit est une fonction mathématique utilisée principalement en statistiques et pour la régression logistique, en intelligence artificielle (réseaux neuronaux), en inférence bayésienne pour transformer les probabilités sur [0,1] en évidence sur R afin d'une part d'éviter des renormalisations permanentes, et d'autre part de rendre additive la formule de Bayes pour faciliter les calculs. Son expression est où p est défini sur ]0, 1[ La base du logarithme utilisé est sans importance, tant que celle-ci est supérieure à 1.
Entropie différentielleDifferential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP).
Non-uniform random variate generationNon-uniform random variate generation or pseudo-random number sampling is the numerical practice of generating pseudo-random numbers (PRN) that follow a given probability distribution. Methods are typically based on the availability of a uniformly distributed PRN generator. Computational algorithms are then used to manipulate a single random variate, X, or often several such variates, into a new random variate Y such that these values have the required distribution.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .