Quadruplet premierEn théorie des nombres, un quadruplet premier est une suite de quatre nombres premiers consécutifs de la forme (p, p+2, p+6, p+8). C'est la seule forme possible pour quatre nombres premiers consécutifs d'écarts entre eux minimaux, en dehors des quadruplets (2,3,5,7) et (3,5,7,11). Par exemple (5, 7, 11, 13) et (11, 13, 17, 19) sont des quadruplets premiers. Un quadruplet de nombres premiers impairs consécutifs a un écart entre le plus petit et le plus grand de ces nombres d'au moins 6, il ne peut être de 6 car le seul triplet de nombres premiers consécutifs de la forme (p, p+2, p+4) est (3, 5, 7) (voir triplet premier).
1 (nombre)1 (un) est l'entier naturel représentant une entité seule — définition qui n'est autre qu'une pétition de principe. « Un » fait quelquefois référence à l'unité, et « unitaire » est quelquefois utilisé comme un adjectif dans ce sens (par exemple, un segment de longueur unitaire est un segment de longueur 1). Tous les systèmes de numération possèdent un chiffre pour signifier le nombre un. Un (chiffre) Le chiffre « un », symbolisé « 1 », est le chiffre arabe servant notamment à signifier le nombre un.
4 (nombre)4 (quatre) est l'entier naturel qui suit 3 et qui précède 5. Le préfixe du Système international pour 4 est tétra. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre quatre. Quatre (chiffre) Le chiffre « quatre », symbolisé « 4 », est le chiffre arabe servant notamment à signifier le nombre quatre. Le chiffre « 4 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.