Longue droiteLa longue droite est un espace topologique analogue à la droite réelle, « en beaucoup plus long ». En tant qu'ensemble ordonné, la longue droite, L, est le produit lexicographique du premier ordinal non dénombrable ω1 par l'ensemble des réels positifs ou nuls. En tant qu'espace topologique, c'est cet ensemble (totalement) ordonné muni de la topologie de l'ordre (les intervalles ouverts forment une base de la topologie). Cet espace topologique est une variété topologique à bord non séparable.
Espace séquentielEn mathématiques, un espace séquentiel est un espace topologique dont la topologie est définie par l'ensemble de ses suites convergentes. C'est le cas en particulier pour tout espace à base dénombrable. Soit X un espace topologique. Un sous-ensemble U de X est dit « séquentiellement ouvert » si toute suite (xn) de X qui converge vers un point de U « appartient à U à partir d'un certain rang ». Un sous-ensemble F de X est dit « séquentiellement fermé » si la convergence d'une suite (xn) de F vers x implique que x appartient à F.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
ForcingEn mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF.
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.
Espace de LindelöfEn mathématiques, un espace de Lindelöf est un espace topologique dont tout recouvrement ouvert possède un sous-recouvrement dénombrable. Cette condition est un affaiblissement de la quasi-compacité, dans laquelle on demande l'existence de sous-recouvrements finis. Un espace est dit héréditairement de Lindelöf si tous ses sous-espaces sont de Lindelöf. Il suffit pour cela que ses ouverts le soient. Les espaces de Lindelöf sont nommés d'après le mathématicien finlandais Ernst Leonard Lindelöf.