Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Explore l'estimation non paramétrique à l'aide d'estimateurs de densité du noyau pour estimer les fonctions et les paramètres de distribution, en mettant l'accent sur la sélection de la bande passante pour une précision optimale.
Introduit des méthodes de noyau telles que SVM et régression, couvrant des concepts tels que la marge, la machine vectorielle de support, la malédiction de la dimensionnalité et la régression de processus gaussien.
Couvre les variables aléatoires gaussiennes, les transformations d'affines et les systèmes linéaires entraînés par le bruit gaussien dans le contrôle multivariable.
Couvre les sujets avancés dans les modèles linéaires généralisés, en mettant l'accent sur les fonctions de liaison, les distributions d'erreurs et l'interprétation des modèles.
Explore l'estimation des paramètres des EPS à l'aide de la théorie de la réponse linéaire et couvre les défis, les exemples, les algorithmes et la convergence.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.