Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
Scattering wave systems that are periodically modulated in time offer many new degrees of freedom to control waves in both the spatial and frequency domains. Such systems, albeit linear, do not conserve frequency and require the adaptation of the usual the ...
We continue our work, started in [9], on the program of classifying triples (X, Y, V), where X, Yare simple algebraic groups over an algebraically closed field of characteristic zero with X < Y, and Vis an irreducible module for Y such that the restriction ...
Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by $V_{g}( ...
Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula of a Weyl module with p-regular highest weight. We also d ...
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
While over fields of characteristic at least 5, a normal, projective and Gorenstein del Pezzo surface is geometrically normal, this does not hold for characteristic 2 and 3. There is no characterization of all such non-geometrically normal surfaces, but th ...
Let G be a classical group with natural module V over an algebraically closed field of good characteristic. For every unipotent element u of G, we describe the Jordan block sizes of u on the irreducible G-modules which occur as compositio ...
Given a transitive permutation group, a fundamental object for studying its higher transitivity properties is the permutation action of its isotropy subgroup. We reverse this relationship and introduce a universal construction of infinite permutation group ...
This paper focuses on depth of field (DOF) extension through polarization aberrations. The addition of polarizing elements into an optical system allows to exploit the polarization of the incoming light as an additional degree of freedom in the optical sys ...