Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute du décalage d'entrée moyen et du problème de biais dans les mises à jour de poids pour les réseaux neuronaux, soulignant l'importance d'une initialisation correcte pour prévenir les problèmes de gradient.
Introduit l'apprentissage automatique scientifique, en mettant l'accent sur son application dans divers domaines scientifiques et sur le lien entre l'apprentissage automatique et la physique.
Explore les signaux neuraux, les techniques d'imagerie cérébrale et l'organisation du cerveau, soulignant l'importance de comprendre les méthodes d'imagerie cérébrale et de mesurer les signaux du cerveau de façon non invasive.
Explore le traitement du signal neuronal, les techniques d'IRM et la validation de l'imagerie, en mettant l'accent sur la connectivité structurelle et fonctionnelle et les applications cliniques.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Couvre la théorie et les applications de l'apprentissage machine contradictoire, en mettant l'accent sur l'optimisation minmax et la robustesse à des exemples contradictoires.
Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.
Plonge dans l'interprétation statistique des réseaux de neurones artificiels, explorant la probabilité de données et maximisant la précision du modèle.