Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Explique l'orthogonalité et les caractères dans les représentations de groupe, y compris les classes d'équivalence et les dimensions vectorielles de l'espace.
Introduit l'analyse fonctionnelle, la théorie de la distribution, les espaces vectoriels topologiques et les opérateurs linéaires, soulignant leur importance dans les applications d'ingénierie.