Commensurabilité (mathématiques)La commensurabilité est un terme mathématique essentiellement employé en histoire des mathématiques. Utilisé principalement dans la Grèce antique, il correspond au concept actuel de nombre rationnel. En mathématiques, deux grandeurs de même nature (deux longueurs, deux aires, deux volumes, etc.) non nulles a et b sont commensurables si et seulement s'il existe une unité u de ces grandeurs dont a et b soient multiples, i.e. tels qu'il existe un couple d'entiers (m, n) tels que a = mu et b = nu.
Additive identityIn mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x. One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings. The additive identity familiar from elementary mathematics is zero, denoted 0.
Papyrus Rhindvignette|Un extrait du papyrus Rhind. vignette|Détail d'une des deux principales parties du papyrus Rhind, British Museum, EA 10057. Le papyrus Rhind est un célèbre papyrus de la Deuxième Période intermédiaire qui a été écrit par le scribe Ahmès. Son nom vient de l'Écossais Alexander Henry Rhind qui l'acheta en 1858 à Louxor, mais il aurait été découvert par des pilleurs sur le site de la ville voisine de Thèbes. Depuis 1865, il est conservé au British Museum (à Londres).
CirconférenceLa circonférence est une courbe fermée limitant une surface relativement circulaire. C'est aussi par extension la longueur de cette courbe. Le mot « circonférence » est particulièrement adapté au cas d'un disque, où elle désigne la longueur du cercle. La circonférence d'une sphère correspond à la longueur d'un grand cercle. La notion de circonférence s'applique également au cas voisin d'une ellipse, même s'il est préférable d'employer le terme périmètre, qui a l'acception plus générale de la longueur d'une ligne fermée de forme quelconque.
SédénionEn mathématiques, les sédénions forment une algèbre réelle de dimension 16, notée . Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : les sédénions obtenus par application de la construction de Cayley-Dickson ; les sédénions coniques (ou algèbre M). À l'instar des octonions, la multiplication des sedénions n'est ni commutative ni associative. De plus, par rapport aux octonions, les sédénions perdent la propriété d'être alternatifs.
QuotientEn mathématiques, un quotient est le résultat d'une division. Le quotient existe ou pas selon l'ensemble de nombres considéré. Dans les entiers naturels, le quotient de par n'existe que si est un multiple de . On parle alors de quotient euclidien, puisqu'il résulte d'une division euclidienne. Le mot quotient s'emploie parfois pour fraction.
Fraction égyptienneUne fraction égyptienne, ou unitaire, est une fraction de numérateur égal à un et de dénominateur entier strictement positif. Un problème classique est d'écrire une fraction comme somme de fractions égyptiennes avec des dénominateurs tous différents, que l'on nomme développement en fractions égyptiennes ou plus simplement développement égyptien. Tous les nombres rationnels positifs peuvent être écrits sous cette forme et ce, d'une infinité de façons différentes. Par exemple .
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Troncaturevignette|Troncature En mathématiques, la troncature est un terme utilisé pour couper le développement décimal d'un nombre à un certain nombre de chiffres après la virgule, ou le développement limité d'une fonction à un certain ordre. Par exemple, considérons les nombres réels : 5,2009002 32,009891288 –6,47009757 Pour tronquer ces nombres à quatre décimales, seuls sont gardés les quatre premiers chiffres après la virgule. Le résultat serait : 5,2009 32,0098 –6,4700 C'est une valeur approchée par défaut pour les nombres positifs, une valeur approchée par excès pour les négatifs.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.