vignette|350px|Diagramme de phases d'un solvant pur (courbes pleines) et du même solvant en présence d'un soluté (pointillés). Les propriétés colligatives se traduisent par un déplacement des courbes d'équilibre solide-liquide et gaz-liquide.
En chimie physique, la loi de l'ébulliométrie permet de quantifier l'élévation de la température d'ébullition d'un solvant en fonction de la quantité de soluté ajouté.
Elle est, avec la loi de la cryométrie et la loi de la tonométrie, l'une des trois lois énoncées à partir de 1878 par François-Marie Raoult concernant les propriétés colligatives d'une solution chimique liquide. Avec la loi de l'osmométrie, énoncée par Jacobus Henricus van 't Hoff en 1896 et concernant le phénomène de l'osmose, ces lois ont notamment permis d'établir des méthodes de détermination expérimentale de la masse molaire des espèces chimiques.
Remarque
Lorsque l'on parle des lois de Raoult (au pluriel), on fait généralement allusion aux trois lois évoquées ci-dessus qu'il ne faut pas confondre avec la loi de Raoult (au singulier) concernant les équilibres liquide-vapeur idéaux.
Lorsque l'on considère un solvant contenant un soluté , la température d'ébullition du solvant avec le soluté est plus haute que la température d'ébullition du solvant seul. La loi de l'ébulliométrie s'énonce ainsi :
L'élévation de la température d'ébullition est proportionnelle à la fraction molaire du soluté.
Soit (en remarquant que pour un corps pur la température d'ébullition est égale à la température de vaporisation) :
avec :
l'élévation de la température d'ébullition du solvant (en K) ;
la constante ébullioscopique du solvant (en K) ;
la fraction molaire du soluté (en mol/mol).
La constante ébullioscopique ne dépend que des propriétés du solvant :
Constante ébullioscopique :
avec :
la constante universelle des gaz parfaits (en J/(K·mol)) ;
la température d'ébullition du solvant pur (en K) ;
l'enthalpie de vaporisation du solvant pur à (en J/mol).
Sous cette forme, la constante ébullioscopique a la dimension d'une température, elle s'exprime en kelvins (K).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Explore le potentiel chimique, l'énergie Gibbs et les propriétés des solutions idéales telles que les effets colligatifs et l'abaissement de la pression de vapeur.
vignette|350px|Diagramme de phases d'un solvant pur (courbes pleines) et du même solvant en présence d'un soluté (pointillés). Les propriétés colligatives se traduisent par un déplacement des courbes d'équilibre solide-liquide et gaz-liquide. En chimie physique, une propriété colligative d'une solution chimique correspond à la différence entre une propriété donnée d'un solvant pur liquide et la même propriété de ce solvant en présence d'un soluté.
In thermodynamics, the ebullioscopic constant Kb relates molality b to boiling point elevation. It is the ratio of the latter to the former: i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution. A formula to compute the ebullioscopic constant is: R is the ideal gas constant. Tb is boiling point of the solvent. M is the molar mass of the solvent. ΔHvap is the molar enthalpy of vaporization.
La molalité correspond à la quantité (nombre de moles) de soluté contenue dans de solvant. La molalité s'exprime en moles par kilogramme (symbole : mol/kg). La molalité est notée b, pour ne pas confondre avec le symbole de la masse : m. Elle doit son utilité au fait que les volumes varient en fonction de la température. La concentration molaire (molarité) classique (mol/l), rapportant la quantité de solvant au volume de la solution, varie ainsi avec la température, ce qui peut occasionner des imprécisions préjudiciables.
Influenza is an infectious respiratory illness caused by influenza viruses. Every year, it causes up to one billion cases of disease worldwide. Despite its high disease burden, the transmission pathway of influenza remains subject to debate. There is incre ...
To date, the vast majority of studies seeking to link discharge to solute concentrations have been based on representations of fluid age distributions in watersheds that are time-invariant. As increasingly detailed spatial and temporal datasets become avai ...
Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stres ...