Résumé
En géométrie, la conjecture de géométrisation de Thurston affirme que les 3-variétés compactes peuvent être décomposées en sous-variétés admettant l'une des huit structures géométriques appelées géométries de Thurston. Formulée par William Thurston en 1976, cette conjecture fut démontrée par Grigori Perelman en 2003. On dit qu'une variété est fermée si elle est compacte et sans bord, et qu'elle est si elle n'est pas somme connexe de variétés qui ne sont pas des sphères. D'après le théorème de décomposition de Milnor, toute variété fermée orientable de dimension 3 possède une décomposition unique en somme connexe de variétés indécomposables (cette décomposition existe encore, mais n'est plus toujours unique dans le cas de variétés non orientables). Cela ramène essentiellement l'étude des variétés de dimension 3 aux variétés indécomposables. Les surfaces (ou plus précisément les variétés riemanniennes de dimension 2, c'est-à-dire les variétés de dimension 2 possédant une structure métrique) qui sont connexes et simplement connexes peuvent être uniformisées, c'est-à-dire mises en bijection conforme avec l'une des trois surfaces, correspondant aux trois « géométries de référence », que sont la sphère (pour la géométrie sphérique), le plan (pour la géométrie euclidienne) et la pseudo-sphère correspondant à la géométrie hyperbolique : c'est le théorème d'uniformisation de Poincaré (qu'on énonce souvent pour le cas équivalent des surfaces de Riemann). La conjecture de géométrisation, formulée par William Thurston en 1976, et démontrée par Grigori Perelman en 2003, affirme que, de manière analogue : On remarque que l'énoncé de la conjecture est plus complexe que son analogue 2-dimensionnel (du moins pour des variétés simplement connexes), car dans ce dernier cas, il est possible de "géométriser" globalement la surface. La signification technique de l'adjectif géométrisable, ainsi que la liste des huit géométries possibles, seront détaillées dans la section suivante.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.