Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Complex differential formIn mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures.
Dérivée extérieureEn mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.
Algèbre graduéevignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).
Coherent sheaf cohomologyIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
Differential graded algebraIn mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
Cohomology ringIn mathematics, specifically algebraic topology, the cohomology ring of a topological space X is a ring formed from the cohomology groups of X together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant.
Opérateur laplacienL'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
Chain (algebraic topology)In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.