Résolution d'un triangleEn géométrie, la résolution d'un triangle consiste en la détermination des différents éléments d'un triangle (longueurs des côtés, mesure des angles, aire) à partir de certains autres. Historiquement, la résolution des triangles fut motivée en cartographie, pour la mesure des distances par triangulation ; en géométrie euclidienne chez les Grecs, pour la résolution de nombreux problèmes de géométrie ; en navigation, pour le point, qui utilise des calculs de coordonnées terrestres et astronomiques (trigonométrie sphérique).
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Loi des cotangentesEn géométrie du triangle, la loi des cotangentes est une relation entre les longueurs a, b et c des côtés d'un triangle et les cotangentes de ses angles moitiés α/2, β/2 et γ/2 : où p = a + b + c/2 désigne le demi-périmètre et r le rayon du cercle inscrit. Découpons le triangle (cf. Fig. 2) en six triangles rectangles, symétriques deux par deux par rapport aux bissectrices et de côtés (AM, r, x), (BM, r, y) et (CM, r, z), avec x + y = c, y + z = a et z + x = b.
Loi des tangentesEn géométrie du triangle, la loi des tangentes est une relation entre la longueur de deux côtés d'un triangle et la mesure de deux de ses angles. On considère un triangle quelconque ABC, représenté sur la Fig. 1 ci-contre, où les angles sont désignés par α, β, γ et les côtés opposés aux angles par les lettres correspondantes a, b et c. Alors, La loi des tangentes est un corollaire immédiat des formules de Mollweide.
Loi des sinusEn trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Spherical law of cosinesIn spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right).
Trigonométrie sphériqueLa trigonométrie sphérique est un ensemble de relations analogues à celles de la trigonométrie euclidienne mais portant sur les angles et distances repérés sur une sphère. La figure de base est le triangle sphérique, délimité non plus par des segments de droites mais par des arcs de demi-grands cercles de cette sphère. Les règles habituelles de la trigonométrie euclidienne ne sont pas applicables ; par exemple la somme des angles d'un triangle situé sur une sphère, s'ils sont exprimés en degrés, est supérieure à 180 degrés.
Loi des cosinusEn mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle.
Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.