Regular PolytopesRegular Polytopes est un livre de mathématiques écrit par le mathématicien canadien Harold Scott MacDonald Coxeter. Initialement publié en 1947, le livre a été mis à jour et réédité en 1963 et 1973. Le livre est une étude complète de la géométrie des polytopes réguliers, c'est-à-dire les polygones et polyèdres réguliers ainsi que leurs généralisations aux dimensions supérieures. Provenant d'un essai intitulé L'Analogie dimensionnelle écrit en 1923, la première édition du livre a pris à Coxeter vingt-quatre ans.
Simplicial polytopeIn geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces and corresponds via Steinitz's theorem to a maximal planar graph. They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons. Simplicial polyhedra include: Bipyramids Gyroelongated dipyramids Deltahedra (equilateral triangles) Platonic tetrahedron, octahed
Tronc (géométrie)Un tronc est la partie d'un solide située entre deux plans parallèles. Le solide est généralement un cône ou une pyramide. Les faces du solide obtenues dans les plans de coupe sont appelées bases du tronc, et la distance entre les deux plans de coupe est la hauteur du tronc. Le volume d'un tronc de pyramide ou de cône est le produit de sa hauteur par la moyenne arithmétique des aires de ses bases et de leur moyenne géométrique.
Patron (géométrie)En géométrie, le patron d'un polyèdre est une figure géométrique plane en un seul morceau qui permet de reconstituer le polyèdre après plusieurs pliages (au niveau de certaines arêtes, les autres apparaissant par jonction des bords du patron). Le terme de patron est à prendre ici dans son deuxième sens : celui de modèle pour construire un objet. Développer un polyèdre consiste à rabattre les différentes faces du polyèdre dans un même plan par découpage selon les arêtes.
Angular defectIn geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: the defect of a vertex of a polyhedron; the defect of a hyperbolic triangle; and the excess also arises in two ways: the excess of a toroidal polyhedron.
RhomboèdreEn géométrie, un rhomboèdre est un polyèdre ressemblant au cube, excepté que ses faces ne sont pas carrées mais en forme de losanges. C'est un des cas particuliers d'un parallélépipède où toutes les arêtes sont de la même longueur. En général, le rhomboèdre peut avoir trois types de faces rhombiques par faces opposées congrues. Si tous les angles internes non-obtus des faces sont égaux, il peut être appelé un trapézoèdre trigonal.
Schläfli orthoschemeIn geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges that are mutually orthogonal. They were introduced by Ludwig Schläfli, who called them orthoschemes and studied their volume in Euclidean, hyperbolic, and spherical geometries. H. S. M. Coxeter later named them after Schläfli.
Hyperoctahedral groupIn mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of type B_n = C_n, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where S_n is the symmetric group of degree n.
Structure spatialevignette|225x225px|Le toit de ce bâtiment industriel est pris en charge par une structure de trame spatiale. vignette|235x235px|Si une force est appliquée sur le nœud bleu, et que la barre rouge n'est pas présente, le comportement de la structure dépend complètement de la rigidité de flexion du nœud bleu. Si la barre rouge est présente, et la flexion de la rigidité du nœud bleu est négligeable par rapport à l'apport de la rigidité de la barre rouge, le système peut être calculé à l'aide d'une matrice de rigidité en négligeant les facteurs angulaires.
HexakioctaèdreUn hexakioctaèdre est un solide de Catalan et le dual d'un solide d'Archimède, le grand rhombicuboctaèdre. Comme tel, il est de faces uniformes mais avec des faces polygonales irrégulières. Il ressemble un peu à un dodécaèdre rhombique gonflé : si on remplace chaque face d'un dodécaèdre rhombique avec un sommet unique et quatre triangles d'une manière régulière, on a pour résultat un hexakioctaèdre. L'hexaki icosaèdre Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979, Disdyakis Dodecahedron - MathWorld.