FacettageEn géométrie, le facettage est le procédé d'enlèvement de parties d'un polygone, d'un polyèdre ou d'un polytope, sans créer de nouveaux sommets. Le facettage est la réciproque ou le procédé dual de la stellation. Pour chaque stellation d'un certain polytope convexe, il existe un facettage dual d'un polytope dual. Le facettage n'a pas été étudié aussi intensément que la stellation. En 1858, Bertrand obtient les polyèdres étoilés (les solides de Kepler-Poinsot) en facettant l'icosaèdre et le dodécaèdre réguliers et convexes.
Order-4 pentagonal tilingIn geometry, the order-4 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,4}. It can also be called a pentapentagonal tiling in a bicolored quasiregular form. This tiling represents a hyperbolic kaleidoscope of 5 mirrors meeting as edges of a regular pentagon. This symmetry by orbifold notation is called 22222 with 5 order-2 mirror intersections. In Coxeter notation can be represented as [5,4], removing two of three mirrors (passing through the pentagon center) in the [5,4] symmetry.
Harold Scott MacDonald CoxeterHarold Scott MacDonald « Donald » Coxeter (, Londres - , Toronto, Canada) est un mathématicien britannique. Il est considéré comme un des grands géomètres du . Une de ses idées originales fut de définir une conique comme une courbe autoduale. Il s'est fait connaître par son travail sur les polytopes réguliers et la géométrie en dimension supérieure. Il a rencontré M. C. Escher et son œuvre géométrique a été une source importante d'inspiration pour ce dernier. Il a aussi inspiré certaines des innovations de Buckminster Fuller.
Well-covered graphIn graph theory, a well-covered graph is an undirected graph in which every minimal vertex cover has the same size as every other minimal vertex cover. Equivalently, these are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970. The well-covered graphs include all complete graphs, balanced complete bipartite graphs, and the rook's graphs whose vertices represent squares of a chessboard and edges represent moves of a chess rook.
Barycentric subdivisionIn mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology. The barycentric subdivision is an operation on simplicial complexes. In algebraic topology it is sometimes useful to replace the original spaces with simplicial complexes via triangulations: The substitution allows to assign combinatorial invariants as the Euler characteristic to the spaces.
TriakioctaèdreUn triakioctaèdre est un polyèdre dual d'un solide d'Archimède, ou un solide de Catalan. Son dual est le cube tronqué. Il peut être vu comme un octaèdre auquel on a ajouté des pyramides triangulaires sur chaque face. Cette interprétation est exprimée dans le nom. Ce polyèdre convexe est topologiquement équivalent à l'octangle étoilé concave. Ils ont la même connectivité de faces, mais les sommets sont à des distances relatives différentes du centre. Un triakioctaèdre est un élément vital dans l'univers du roman de Hugh Cook The Wishstone and the Wonderworkers.
Polyèdre flexibleEn géométrie, un polyèdre flexible, ou flexaèdre, est un polyèdre que l'on peut déformer continûment sans changer la forme de ses faces. Le théorème de rigidité de Cauchy montre qu'un tel polyèdre ne peut être convexe. Les premiers exemples de polyèdres flexibles, les , furent découverts par Raoul Bricard en 1897. Ce sont des surfaces auto-intersectantes (on parle parfois de polyèdres croisés, ou étoilés).
Facet (geometry)In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a face. To facet a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to stellation and may also be applied to higher-dimensional polytopes.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).