Couvre la modélisation de la menace dans l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la défense contre les exemples contradictoires et les portes arrière.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Explore les techniques d'imagerie quantitative pour le génie civil, couvrant les capteurs ToF, la technologie LIDAR, les capteurs à ultrasons, la lumière structurée, les caméras stéréo et l'estimation de la profondeur via l'apprentissage en profondeur.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.