Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
Réseau de BravaisEn cristallographie, un réseau de Bravais est une distribution régulière de points – appelés nœuds – dans l’espace qui représente la périodicité de la distribution atomique d’un cristal. Les nœuds peuvent être imaginés comme les sommets des mailles, c'est-à-dire des portions de l'espace dans lesquelles la structure cristalline peut être divisée. La structure est alors reconstruite par simple translation de la maille.
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Système cristallinUn 'système cristallin' est un classement des cristaux sur la base de leurs caractéristiques de symétrie, sachant que la priorité donnée à certains critères plutôt qu'à d'autres aboutit à différents systèmes. La symétrie de la maille conventionnelle permet de classer les cristaux en différentes familles cristallines : quatre dans l'espace bidimensionnel, six dans l'espace tridimensionnel. Une classification plus fine regroupe les cristaux en deux types de systèmes, selon que le critère de classification est la symétrie du réseau ou la symétrie morphologique.
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
Système cristallin orthorhombiqueEn cristallographie, le système cristallin orthorhombique est l'un des sept systèmes cristallins dans lesquels on classe les cristaux selon leurs propriétés de symétrie. Tout cristal orthorhombique possède comme opération de symétrie une rotation binaire ou une réflexion, voire les deux, selon trois directions perpendiculaires qui sont choisies comme axes du référentiel.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Physique du solideLa physique du solide est l'étude des propriétés fondamentales des matériaux solides, cristallins – par exemple la plupart des métaux –, ou amorphes – par exemple les verres – en partant autant que possible des propriétés à l'échelle atomique (par exemple la fonction d'onde électronique) pour remonter aux propriétés à l'échelle macroscopique. Bien que celles-ci présentent parfois de fortes réminiscences des propriétés microscopiques (par ex.
Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.