Amniotic stem cells are the mixture of stem cells that can be obtained from the amniotic fluid as well as the amniotic membrane. They can develop into various tissue types including skin, cartilage, cardiac tissue, nerves, muscle, and bone. The cells also have potential medical applications, especially in organ regeneration.
The stem cells are usually extracted from the amniotic sac by amniocentesis which occurs without harming the embryos. The use of amniotic fluid stem cells is therefore generally considered to lack the ethical problems associated with the use of cells from embryos.
In 2009, the first US amniotic stem cell bank was opened in Medford, MA, by Biocell Center, an international company specializing in the cryopreservation and private banking of amniotic fluid stem cells.
The presence of embryonic and foetal cells from all germ layers in the amniotic fluid was gradually determined since the 1980s. Haematopoietic progenitor cells were first reported to be present in the amniotic fluid in 1993, specifically up to the 12th week of pregnancy. It was suggested that these originated from the yolk sac.
In 1996, a study indicated that non-haematopoietic progenitor cells were also present in the amniotic fluid. This was later confirmed as mesenchymal stem cells were obtained. In addition, evidence indicated that embryonic stem cells are part of the fluid, although in very small quantities.
At around the same time, it was determined that stem cells from the amniotic membrane also have multipotent potential. AS their differentiation into neural and glial cells as well as hepatocyte precursors was observed.
The majority of stem cells present in the amniotic fluid share many characteristics, which suggests they may have a common origin.
In 2007, it was confirmed that the amniotic fluid contains a heterogeneous mixture of multipotent cells after it was demonstrated that they were able to differentiate into cells from all three germ layers but they could not form teratomas following implantation into immunodeficient mice.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene).The students will obtain theoretical and practical insight into embryonic stem cell biol
The course presents an overview on how recent advances at the interfaces of biology, biotechnology, engineering, physical sciences, and medicine are 1) shaping the landscape of biomedical research; 2)
The amniotic sac, also called the bag of waters or the membranes, is the sac in which the embryo and later fetus develops in amniotes. It is a thin but tough transparent pair of membranes that hold a developing embryo (and later fetus) until shortly before birth. The inner of these membranes, the amnion, encloses the amniotic cavity, containing the amniotic fluid and the embryo. The outer membrane, the chorion, contains the amnion and is part of the placenta.
L'amniocentèse est une procédure médicale invasive utilisée pour un diagnostic prénatal, dans laquelle de liquide amniotique sont extraits de la cavité amniotique (l'amnios constitue avec le chorion l'enveloppe de l'œuf) dans laquelle se trouve le fœtus. L'amniocentèse peut être pratiquée dès que l'on considère qu'il y a assez de liquide amniotique entourant le fœtus, à partir de la d'aménorrhée jusqu'à la fin de la grossesse. Elle fait partie avec la biopsie de trophoblaste (choriocentèse) et la ponction de sang fœtal (cordocentèse) des moyens invasifs de diagnostic prénatal.
Une cellule souche embryonnaire (CSE) est une cellule souche pluripotente issue de la masse cellulaire interne ou de l'épiblaste d’un embryon préimplantatoire au stade de blastocyste. Un embryon humain atteint le stade de blastocyste 4 à 5 jours après la fécondation et consiste en un amas de 50 à 150 cellules (masse cellulaire interne et trophectoderme). L'isolation de la masse cellulaire interne requiert de détruire le blastocyste. Les cellules souches embryonnaires sont une source quasi parfaite pour les greffes et l'ingénierie tissulaire.
Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaning-ful, and durable, standards that ensure reproducibility and ...