Amniotic stem cells are the mixture of stem cells that can be obtained from the amniotic fluid as well as the amniotic membrane. They can develop into various tissue types including skin, cartilage, cardiac tissue, nerves, muscle, and bone. The cells also have potential medical applications, especially in organ regeneration.
The stem cells are usually extracted from the amniotic sac by amniocentesis which occurs without harming the embryos. The use of amniotic fluid stem cells is therefore generally considered to lack the ethical problems associated with the use of cells from embryos.
In 2009, the first US amniotic stem cell bank was opened in Medford, MA, by Biocell Center, an international company specializing in the cryopreservation and private banking of amniotic fluid stem cells.
The presence of embryonic and foetal cells from all germ layers in the amniotic fluid was gradually determined since the 1980s. Haematopoietic progenitor cells were first reported to be present in the amniotic fluid in 1993, specifically up to the 12th week of pregnancy. It was suggested that these originated from the yolk sac.
In 1996, a study indicated that non-haematopoietic progenitor cells were also present in the amniotic fluid. This was later confirmed as mesenchymal stem cells were obtained. In addition, evidence indicated that embryonic stem cells are part of the fluid, although in very small quantities.
At around the same time, it was determined that stem cells from the amniotic membrane also have multipotent potential. AS their differentiation into neural and glial cells as well as hepatocyte precursors was observed.
The majority of stem cells present in the amniotic fluid share many characteristics, which suggests they may have a common origin.
In 2007, it was confirmed that the amniotic fluid contains a heterogeneous mixture of multipotent cells after it was demonstrated that they were able to differentiate into cells from all three germ layers but they could not form teratomas following implantation into immunodeficient mice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The amniotic sac, also called the bag of waters or the membranes, is the sac in which the embryo and later fetus develops in amniotes. It is a thin but tough transparent pair of membranes that hold a developing embryo (and later fetus) until shortly before birth. The inner of these membranes, the amnion, encloses the amniotic cavity, containing the amniotic fluid and the embryo. The outer membrane, the chorion, contains the amnion and is part of the placenta.
Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation. In this procedure, a thin needle is inserted into the abdomen of the pregnant woman.
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene).The students will obtain theoretical and practical insight into embryonic stem cell biol
The course presents an overview on how recent advances at the interfaces of biology, biotechnology, engineering, physical sciences, and medicine are 1) shaping the landscape of biomedical research; 2)
Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaning-ful, and durable, standards that ensure reproducibility and ...