Frequentist probabilityFrequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the classical interpretation.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Jeu d'argentthumb|Le Caravage, Les Tricheurs, 1594-1595. Le jeu d'argent est la pratique d'un jeu associée à un intéressement financier à l'issue de la partie. Chaque joueur engage un certain montant financier dans le jeu, qui sera tout ou partie perdu, ou qui sera augmenté en cas de gain. Ces jeux sont pour la plupart des jeux de hasard pur, ou de hasard raisonné. La prudence est de mise pour éviter la ruine du joueur. Les probabilités de gains des différents types de jeu sont variables et une bonne gestion des mises et de ses cartes peuvent permettre de réaliser quelques gains.
Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
PhysiqueLa physique est la science qui essaie de comprendre, de modéliser et d'expliquer les phénomènes naturels de l'Univers. Elle correspond à l'étude du monde qui nous entoure sous toutes ses formes, des lois de ses variations et de leur évolution. La physique développe des représentations du monde expérimentalement vérifiables dans un domaine de définition donné. Elle produit plusieurs lectures du monde, chacune n'étant considérée comme précise que jusqu'à un certain point.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Blaise PascalBlaise Pascal, né le à Clermont (devenue Clermont-Ferrand) en Auvergne et mort le à Paris, est un polymathe : mathématicien, physicien, inventeur, philosophe, moraliste et théologien français. Enfant précoce, il est éduqué par son père. Les premiers travaux de Pascal concernent les sciences naturelles et appliquées. Il contribue de manière importante à l’étude des fluides et clarifie les concepts de pression et de vide en étendant le travail de Torricelli. Il est l'auteur de textes importants sur la méthode scientifique.