Jérôme CardanJérôme Cardan (en italien : Gerolamo Cardano ou Girolamo Cardano, en latin : Hieronymus Cardanus), né à Pavie le et mort à Rome le , est un mathématicien, philosophe, astrologue, inventeur et médecin italien. Né à Pavie le , il est le fils illégitime d'un docte juriste milanais, Fazio Cardano, jurisconsulte, ami de Léonard de Vinci, et d'une veuve, Chiara Micheri. Extraordinairement précoce et éduqué par son père, il est, dès sa jeunesse, célèbre comme astrologue et mage, avant de donner des preuves de son , dans les mathématiques et les sciences naturelles.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Événement (probabilités)vignette|Jeu de dés : une expérience aléatoire. En théorie des probabilités, un événement lié à une expérience aléatoire est un sous-ensemble des résultats possibles pour cette expérience (c'est-à-dire un certain sous-ensemble de l'univers lié à l'expérience). Un événement étant souvent défini par une proposition, nous devons pouvoir dire, connaissant le résultat de l'expérience aléatoire, si l'événement a été réalisé ou non au cours de cette expérience. Par exemple, considérons l'expérience aléatoire consistant à lancer un dé à 6 faces.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Théorème de Bayesvignette|Théorème de Bayes sur néon bleu, dans les bureaux d’Autonomy à Cambridge. Le théorème de Bayes ( ) est l'un des principaux théorèmes de la théorie des probabilités. Il est aussi utilisé en statistiques du fait de son application, qui permet de déterminer la probabilité qu'un événement arrive à partir d'un autre évènement qui s'est réalisé, notamment quand ces deux évènements sont interdépendants.
Combinaison sans répétitionLes combinaisons sont un concept de mathématiques, plus précisément de combinatoire, décrivant les différentes façons de choisir un nombre donné d'objets dans un ensemble de taille donnée, lorsque les objets sont discernables et que l'on ne se soucie pas de l'ordre dans lequel les objets sont placés ou énumérés. Le nom complet, bien que peu usité est combinaison sans répétition de n éléments pris k à k. Autrement dit, les combinaisons de taille k d'un ensemble E de cardinal n sont les sous-ensembles de E qui ont pour taille k.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Sciencethumb|Allégorie de la Science par Jules Blanchard, située sur le parvis de l'hôtel de ville de Paris. La (du latin scientia, « connaissance », ) est dans son sens premier « la somme des connaissances » et plus spécifiquement une entreprise systématique de construction et d'organisation des connaissances sous la forme d'explications et de prédictions testables.
Indépendance (probabilités)vignette|Paire de dés L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités. Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.