Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Énergie potentielleL'énergie potentielle d'un système physique est l'énergie liée à une interaction, qui a la capacité de se transformer en d'autres formes d'énergie, le plus souvent en énergie cinétique, une énergie de mouvement. La force qui modélise l'interaction est une force conservative c'est-à-dire que son travail ne dépend pas du chemin suivi lors du déplacement, mais uniquement du point de départ et du point d'arrivée : .
Module de cisaillementEn résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement. La définition du module de rigidité , parfois aussi noté μ, estoù (voir l'image ci-contre) est la contrainte de cisaillement, la force, l'aire sur laquelle la force agit, le déplacement latéral relatif et l'écart à l'angle droit, le déplacement latéral et enfin l'épaisseur.
Yield (engineering)In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.
Elasticity tensorThe elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied. This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.
Module d'élasticité isostatiqueLe module d'élasticité isostatique () est la constante qui relie la contrainte au taux de déformation d'un matériau isotrope soumis à une compression isostatique. Généralement noté ( en anglais), le module d'élasticité isostatique permet d'exprimer la relation de proportionnalité entre le premier invariant du tenseur des contraintes et le premier invariant du tenseur des déformations : où : est la contrainte isostatique (en unité de pression) ; est le module d'élasticité isostatique (en unité de pression) ; est le taux de déformation isostatique (sans dimension).
Oscillateur harmoniqueUn oscillateur harmonique est un oscillateur idéal dont l'évolution au cours du temps est décrite par une fonction sinusoïdale, dont la fréquence ne dépend que des caractéristiques du système et dont l'amplitude est constante. Ce modèle mathématique décrit l'évolution de n'importe quel système physique au voisinage d'une position d'équilibre stable, ce qui en fait un outil transversal utilisé dans de nombreux domaines : mécanique, électricité et électronique, optique. Il néglige les forces dissipatives (frottement par exemple).