Résumé
En mathématiques, les rotations en quatre dimensions (souvent appelées simplement rotations 4D) sont des transformations de l'espace euclidien , généralisant la notion de rotation ordinaire dans l'espace usuel ; on les définit comme des isométries directes ayant un point fixe (qu'on peut prendre comme origine, identifiant les rotations aux rotations vectorielles) ; le groupe de ces rotations est noté SO(4) : il est en effet isomorphe au groupe spécial orthogonal d'ordre 4. Les propriétés des rotations 4D sont assez différentes de celles en trois dimensions ; en particulier, elle n'ont le plus souvent qu'un seul point fixe. Elles possèdent en revanche deux plans invariants orthogonaux, et peuvent toutes s'exprimer comme composées de deux rotations (dites simples) autour de ces deux plans. Par analogie avec les rotations du plan (autour d'un point) et les rotations de l'espace (autour d'une droite), on pourrait vouloir définir les rotations de l'espace à quatre dimensions (ou rotations 4D) comme se faisant autour d'un plan ; une analyse plus abstraite de cette question amène à définir une rotation 4D comme une isométrie de cet espace laissant un point fixe ; utilisant ce point comme origine, on se ramène à l'étude des isométries vectorielles, encore appelées transformations unitaires. On montre alors que les rotations autour d'un plan ne sont que des cas très particuliers, appelés rotations simples. Sauf précision contraire, les rotations de cet article sont toutes des rotations 4D. Les angles sont ramenés à l'intervalle , sauf lorsque le contexte justifie une exception. L'étude algébrique est faite systématiquement dans le cas vectoriel (autrement dit les rotations ont toujours au moins l'origine comme point fixe). Un plan fixe est un plan (un sous-espace vectoriel ou affine de dimension 2) dont tous les vecteurs (respectivement les points) sont invariants dans la rotation. Un plan invariant est un plan dont tous les vecteurs restent dans le plan après la rotation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.