Concept

Pseudo-aléatoire

Concepts associés (18)
Générateur de nombres pseudo-aléatoires
Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant certaines propriétés du hasard. Par exemple, les nombres sont supposés être suffisamment indépendants les uns des autres, et il est potentiellement difficile de repérer des groupes de nombres qui suivent une certaine règle (comportements de groupe). Un algorithme déterministe génère des suites de nombres qui ne peuvent pas satisfaire complètement les critères mathématiques qualifiant les suites aléatoires.
Hasard
vignette|Les jeux de dés sont des symboles du hasard (jeux de hasard). vignette|Tyché ou Fortuna et sa corne d'abondance (fortune, hasard, en grec ancien, sort en latin) déesse allégorique gréco-romaine de la chance, des coïncidences, de la fortune, de la prospérité, de la destinée...|alt= Le hasard est le principe déclencheur d'événements non liés à une cause connue. Il peut être synonyme de l'« imprévisibilité », de l'« imprédictibilité », de fortune ou de destin.
Cryptographie
thumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Statistical randomness
A numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice roll or the digits of π exhibit statistical randomness. Statistical randomness does not necessarily imply "true" randomness, i.e., objective unpredictability. Pseudorandomness is sufficient for many uses, such as statistics, hence the name statistical randomness. Global randomness and local randomness are different.
Loi de probabilité
thumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Graine aléatoire
Une graine aléatoire (aussi appelée germe aléatoire) est un nombre utilisé pour l'initialisation d'un générateur de nombres pseudo-aléatoires. Toute la suite de nombres aléatoires produits par le générateur découle de façon déterministe de la valeur de la graine. Par contre, deux graines différentes produiront des suites de nombres aléatoires complètement différentes. Le choix d'une graine aléatoire est une étape cruciale en cryptologie et en sécurité informatique.
Algorithme probabiliste
En algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Méthode de Monte-Carlo
Une méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Générateur de nombres aléatoires matériel
En informatique, un générateur de nombres aléatoires matériel (aussi appelé générateur de nombres aléatoires physique ; en anglais, hardware random number generator ou true random number generator) est un appareil qui génère des nombres aléatoires à partir d'un phénomène physique, plutôt qu'au moyen d'un programme informatique. De tels appareils sont souvent basés sur des phénomènes microscopiques qui génèrent de faibles signaux de bruit statistiquement aléatoires, tels que le bruit thermique ou l'effet photoélectrique.
vignette|redresse=1|Deux dés à jouer ordinaires. vignette|redresse=1|Dé à japonais, présentant un trou plus grand que les autres et peint en rouge pour la face . Un dé est un objet, généralement de petite taille et de forme cubique, qui permet de tirer aléatoirement un nombre ou un symbole parmi plusieurs possibilités. vignette|gauche|upright=1|Quatre dés traditionnels cubiques montrant les six faces d'un dé. vignette|Divers dés faits maison dans une pâte à modeler dure.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.