thumb|Les entiers d'Eisenstein sont les points d'intersection d'un treillis triangulaire dans le plan complexe. En mathématiques, les 'entiers d'Eisenstein', nommés en l'honneur du mathématicien Gotthold Eisenstein, sont les nombres complexes de la forme où a et b sont des entiers relatifs et est une racine cubique primitive de l'unité (souvent autrement notée j). Les entiers d'Eisenstein forment un réseau triangulaire dans le plan complexe. Ils contrastent avec les entiers de Gauss qui forment un réseau carré dans le plan complexe. Ils constituent un exemple d'anneau des entiers d'un corps quadratique qui, comme tout anneau des entiers d'une extension finie du corps des rationnels, est un anneau de Dedekind. Les entiers d'Eisenstein sont utilisés en arithmétique modulaire pour la résolution d'équations diophantiennes, par exemple dans une démonstration du dernier théorème de Fermat dans un cas élémentaire : celui de l'exposant 3. L'équation x2 + 3y2 = p, traitée dans l'article « Théorème des deux carrés de Fermat », possède aussi une méthode de résolution utilisant ces entiers. Les entiers d'Eisenstein forment un anneau commutatif euclidien. Tout entier d'Eisenstein a + bω est un entier algébrique, comme une racine du polynôme En particulier, ω satisfait l'équation L'anneau des entiers d'Eisenstein est en fait l'anneau de tous les entiers algébriques du corps quadratique Q[ω] = Q[i]. Son discriminant est égal à –12. Le groupe des unités de cet anneau est le groupe cyclique formé par les six racines sixièmes de l'unité dans le corps des complexes (c'est-à-dire ±1, ±ω, ±ω). En effet, ce sont les seuls entiers d'Eisenstein de module 1. right|thumb|Petits entiers d'Eisenstein premiers. Si x et y sont des entiers d'Eisenstein, nous disons que x divise y s'il existe un certain entier d'Eisenstein z tel que y = z x. Ceci étend la notion de divisibilité des entiers ordinaires. Par conséquent, nous pouvons aussi étendre la notion de primalité.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (20)
Extension cyclotomique
En théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Lemme d'Euclide
vignette|Le lemme d'Euclide est tiré des Éléments, ouvrage fondateur des mathématiques occidentales. En mathématiques, le lemme d'Euclide est un résultat d'arithmétique élémentaire sur la divisibilité qui correspond à la Proposition 32 du Livre VII des Éléments d'Euclide. Il s'énonce ainsi : Une généralisation est : Formellement : si a|bc et PGCD(a, b) = 1, alors a|c. Dans le traité de Gauss, les Disquisitiones arithmeticae, l'énoncé du lemme d'Euclide constitue la proposition 14 (section 2), qu'il utilise pour prouver l'unicité de la décomposition en produit de facteurs premiers d'un entier (théorème 16), admettant l'existence comme .
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.