Résumé
En théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens. Dans ce qui suit, on considère un ensemble non vide muni d'une tribu . On appelle évènements les éléments de . Pour tout événement : C'est-à-dire que la probabilité d'un événement est représentée par un nombre réel compris entre 0 et 1. désignant l'univers associé à l'expérience aléatoire considérée, C'est-à-dire que la probabilité de l'événement certain, ou d'obtenir un quelconque résultat de l'univers, est égale à 1. Autrement dit, la probabilité de réaliser l'un ou l'autre des événements élémentaires est égale à 1. Toute famille dénombrable d'événements deux à deux disjoints (on dit aussi : deux à deux incompatibles), satisfait : C'est-à-dire que la probabilité d'un événement qui est la réunion (dénombrable) disjointe d'événements est égale à la somme des probabilités de ces événements. Ceci s'appelle la σ-additivité, ou additivité dénombrable (si les événements ne sont pas deux à deux disjoints, cette relation n'est plus vraie en général). À partir des axiomes, se démontrent un certain nombre de propriétés utiles pour le calcul des probabilités, par exemple : Remarque : en particulier, cela interdit à l'univers d'être vide, le deuxième axiome exigeant que sa mesure vaille 1 (et ne soit donc pas nulle a fortiori). Si , sont deux événements incompatibles (ou disjoints), alors Plus généralement, si est une famille d'événements 2 à 2 incompatibles, alors Cette relation signifie que la probabilité que B se réalise, mais pas A, est égale à la différence .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (12)
Axiomes des probabilités
En théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens.
Théorie des probabilités
La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Loi de probabilité
thumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Afficher plus
Cours associés (94)
MATH-230: Probability
This course provides an introduction to probability theory - the mathematical study of randomness. The aim is to get to know the basic mathematical framework of probability theory, and to learn to thi
MATH-232: Probability and statistics
A basic course in probability and statistics
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Afficher plus
MOOCs associés (2)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.