Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Axiomes de Peanovignette|Giuseppe Peano En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique.
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Arithmétique de RobinsonL'arithmétique de Robinson introduite en 1950 par Raphael Robinson est une théorie du premier ordre pour l'arithmétique des entiers naturels, qui est finiment axiomatisable. Ses axiomes sont essentiellement ceux de l'arithmétique de Peano sans le schéma d'axiomes de récurrence. L'arithmétique de Robinson suffit pour le théorème d'incomplétude de Gödel-Rosser et pour le théorème de Church (indécidabilité du problème de la décision), au sens où l'arithmétique de Robinson, et même toute théorie axiomatique dans le langage de l'arithmétique qui est récursive et cohérente et qui a pour conséquence les axiomes de l'arithmétique de Robinson, est nécessairement incomplète et indécidable.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
Problème de la décisionEn logique mathématique, on appelle problème de la décision ou, sous son nom d'origine en allemand, Entscheidungsproblem, le fait de déterminer de façon mécanique (par un algorithme) si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive dans un système de déduction sans autres axiomes que ceux de l'égalité (exemples : système à la Hilbert, calcul des séquents, déduction naturelle).
Complétude (logique)En logique mathématique et métalogique, un système formel est dit complet par rapport à une propriété particulière si chaque formule possédant cette propriété peut être prouvée par une démonstration formelle à l'aide de ce système, c'est-à-dire par l'un de ses théorèmes ; autrement, le système est dit incomplet. Le terme « complet » est également utilisé sans qualification, avec des significations différentes selon le contexte, la plupart du temps se référant à la propriété de la validité sémantique.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.