Résumé
En mathématiques, l'ensemble des parties d'un ensemble, parfois appelé ensemble puissance, est l'ensemble de tous les sous-ensembles d'un ensemble donné (y compris cet ensemble lui-même et l'ensemble vide). Soit un ensemble. L'ensemble des parties de est l'ensemble, généralement noté , dont les éléments sont les sous-ensembles de : Il est également parfois noté , ou (gothique), ou encore (P de Weierstrass). Dans la théorie des ensembles de Zermelo, l'existence, pour tout ensemble , d'un tel ensemble , est postulée par l'axiome de l'ensemble des parties, et son unicité résulte de l'axiome d'extensionnalité. n'est jamais vide car l'ensemble vide et sont toujours des parties de : , . Si deux ensembles E et F sont équipotents alors et le sont aussi. Soit un ensemble à n éléments. Alors, l'ensemble des parties de E est fini, et a 2n éléments. Pour tout entier naturel n, on a n < 2n. Ce résultat se généralise en cardinalité infinie. Le théorème de Cantor énonce que l'ensemble des parties d'un ensemble E (fini ou non) a une cardinalité strictement supérieure à celle de E : il existe une injection d'un ensemble dans l'ensemble de ses parties (par exemple celle qui associe à un élément le singleton auquel il appartient), mais aucune bijection. Tout ensemble qui peut être mis en bijection avec N, l'ensemble des entiers naturels, est dit dénombrable. Le théorème de Cantor montre en particulier que P(N) n'est pas dénombrable, ce qui peut s'interpréter en disant que l'on ne peut « numéroter » de façon exhaustive les sous-ensembles de N. C'est-à-dire que, dès que l'on a une suite de sous-ensembles de N indexée par les entiers, on trouve forcément un sous-ensemble de N qui n'apparaît pas dans cette suite. Quelle peut-être la cardinalité d'un ensemble de parties de N, c'est-à-dire d'un sous-ensemble de P(N) ? Georg Cantor pensait qu'elle ne pouvait être que finie, dénombrable, ou celle de P(N). C'est l'hypothèse du continu qui n'est ni démontrable ni réfutable dans la théorie des ensembles ZFC.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.