Les couvertures comportent des méthodes d'extraction, de regroupement et de classification pour les ensembles de données de grande dimension et l'analyse comportementale utilisant PCA, t-SNE, k-means, GMM et divers algorithmes de classification.
Explore le processus de réfutation de la séance de cours académique, en mettant l'accent sur l'analyse des données pour l'acceptation du papier, l'apprentissage automatique et les tests statistiques.
Introduit des outils de traitement de signaux statistiques pour les communications sans fil, mettant l'accent sur les applications pratiques et l'expérience pratique avec Python ou Matlab.