Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.
Introduit des bases de traitement d'image en Python, couvrant la manipulation, la conversion à l'échelle grise, la détection des bords et la convolution avec les noyaux.
Couvre les fondamentaux de l'échelle vers des données massives à l'aide de Spark, en mettant l'accent sur les DDR, les transformations, les actions, l'architecture Spark, et la boîte à outils d'apprentissage automatique de Spark.
S'engager dans l'innovation tactique dans les mouvements sociaux, en analysant les diverses stratégies et tactiques des organisations environnementales pour atteindre leurs objectifs.
Couvre le traitement de flux de données avec Apache Kafka et Spark, y compris le temps d'événement vs le temps de traitement, les opérations de traitement de flux, et les jointures de flux.