Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.
Équation de Pell-Fermatthumb|Pierre de Fermat (1601-1665) affirme que l'équation de Pell-Fermat possède toujours une infinité de solutions si m = ±1, sans savoir que Bhāskara II (1114-1185) avait fait de même. En mathématiques et plus précisément en arithmétique, l'équation de Pell-Fermat est une équation diophantienne polynomiale quadratique. Si n est un entier positif qui n'est pas un carré parfait et m un entier non nul, l'équation prend la forme suivante : Les solutions recherchées sont les solutions telles que x et y soient des valeurs entières.
Integer triangleAn integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles. Sometimes other definitions of the term rational triangle are used: Carmichael (1914) and Dickson (1920) use the term to mean a Heronian triangle (a triangle with integral or rational side lengths and area);cite book |last=Carmichael |first=R.
Triangle de HéronIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.