Le diborane est un composé chimique de formule . Cette molécule, constituée de bore et d'hydrogène, résulte de l'union de deux groupes borane liés par deux de leurs atomes d'hydrogène. Il ne doit pas être confondu avec le diborane(4), de formule , dans lequel les deux atomes de bore sont liés par une liaison covalente ; le diborane est parfois appelé diborane(6) pour le distinguer de ce composé.
À température ambiante, il s'agit d'un gaz incolore à l'odeur douceâtre qui s'enflamme facilement en présence d'humidité. Il forme avec l'air des mélanges hautement explosifs. C'est un composé clef du bore, aux applications variées. Sa formation est endothermique et l'enthalpie libre de formation est positive . Le diborane tend donc à se décomposer en libérant de l'hydrogène , mais avec une cinétique assez lente.
Le diborane est un gaz incolore plus léger que l’air ; il se condense à sous ; sa masse volumique est et sa chaleur latente de vaporisation est . Il se solidifie à . À , sa pression de vapeur saturante est de et le rapport entre les volumes de gaz et de liquide est égal à 362. Gazeux, il est très inflammable et peut provoquer spontanément de violentes explosions dans l’air. Son point critique se trouve à et .
Le diborane se décompose lentement, même à température ambiante, en dihydrogène et en hydrures de bore supérieurs. Cette décomposition s’accélère avec l’accroissement de la température. Le diborane est sensible à l’humidité et s’hydrolyse instantanément en dihydrogène et en acide borique suivant la réaction exothermique :
6 → 2 + 6 .
Au contact du lithium et de l’aluminium, le diborane donne des hydrures qui peuvent s’enflammer spontanément. Il n’exerce pas d’action corrosive sur les métaux usuels mais attaque la plupart des caoutchoucs et des matières plastiques, hormis par exemple le polytétrafluoroéthylène et le polychlorotrifluoroéthylène .
Le diborane présente une géométrie avec deux atomes d'hydrogène liants et quatre atomes d'hydrogène terminaux.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
Explore la synthèse stéréosélective à travers les réactions de Wittig et Julia, en mettant l'accent sur la réactivité et la régiosélectivité des carbocations et l'utilisation de dérivés du borane.
Cet article concerne un composé spécifique. Pour la classe de composés, voir boranes. Le borane (trihydridobore en nomenclature systématique), est une molécule instable et hautement réactive répondant à la formule chimique BH3. L'espèce moléculaire BH3 est un acide de Lewis très fort. Par conséquent, il est hautement réactif et ne peut être observé directement que sous forme de produit continu, transitoire, dans un système à flux ou lors de la réaction de bore atomique ablaté au laser avec de l’hydrogène.
L'aluminohydrure de lithium, aussi appelé tétrahydruroaluminate de lithium (), généralement noté LAH, est un puissant générateur d'hydrures donc un fort réducteur utilisé en chimie organique. Il est plus puissant que le borohydrure de sodium (appelé aussi tétrahydruroborate de sodium), autre réactif de réduction, car la liaison Al-H est plus faible que la liaison B-H. Il transforme les esters, les acides carboxyliques et les cétones en alcools et les composés nitrés en amines.
Le tétrahydruroborate de sodium, aussi appelé borohydrure de sodium, est un composé chimique constitué d'atomes de bore, de sodium et d'hydrogène. Sa formule brute est NaBH4. C'est un agent réducteur utilisé notamment dans l'industrie pharmaceutique en tant que source d'hydrures H−. C'est un solide blanc, souvent rencontré sous forme de poudre. Le borohydrure de sodium est synthétisé industriellement selon la méthode Schlesinger: l'hydrure de sodium est traité avec du borate de triméthyle à 250-270 °C: B(OCH3)3 + 4 NaH → NaBH4 + 3 NaOCH3 Le borohydrure de sodium est l'hydrure réducteur le plus synthétisé.
Photosynthetic water oxidation is catalyzed by the Mn4Ca cluster in photosystem II (PSII). The nearby redox-active tyrosine (Y-Z) serves as a direct electron acceptor of the Mn4Ca cluster and it forms a low-barrier H-bond (LBHB) with a neighboring histidin ...
ROYAL SOC CHEMISTRY2020
, ,
Ammonia borane (AB) has been extensively studied as a solid-state hydrogen storage material. On the other hand, its reactivity with CO2 is still unclear, especially in the solid state. By carefully controlling the CO2 pressure and temperature, AB efficient ...
Cambridge2024
,
The potent nucleophilicity and remarkably low basicity of 1,3,2- diazaphospholenes (DAPs) is exploited in a catalytic, metal-free 1,4-reduction of free ,-unsaturated carboxylic acids. Notably, the reduction occurs without a prior deprotonation of the car ...