Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections (by the Cartan–Dieudonné theorem), it is a continuous group (indeed, Lie group), not a discrete group, and is generally considered separately. Let E be a finite-dimensional Euclidean space. A finite reflection group is a subgroup of the general linear group of E which is generated by a set of orthogonal reflections across hyperplanes passing through the origin. An affine reflection group is a discrete subgroup of the affine group of E that is generated by a set of affine reflections of E (without the requirement that the reflection hyperplanes pass through the origin). The corresponding notions can be defined over other fields, leading to complex reflection groups and analogues of reflection groups over a finite field. In two dimensions, the finite reflection groups are the dihedral groups, which are generated by reflection in two lines that form an angle of and correspond to the Coxeter diagram Conversely, the cyclic point groups in two dimensions are not generated by reflections, nor contain any – they are subgroups of index 2 of a dihedral group. Infinite reflection groups include the frieze groups and and the wallpaper groups , , , and . If the angle between two lines is an irrational multiple of pi, the group generated by reflections in these lines is infinite and non-discrete, hence, it is not a reflection group. Finite reflection groups are the point groups Cnv, Dnh, and the symmetry groups of the five Platonic solids. Dual regular polyhedra (cube and octahedron, as well as dodecahedron and icosahedron) give rise to isomorphic symmetry groups.
Michael Herzog, Maya Roinishvili
Jian Wang, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, Luca Pescatore, Chitsanu Khurewathanakul, Zhirui Xu, Lei Zhang, Jessica Prisciandaro, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Cédric Potterat, Liang Sun, Pietro Marino, Mirco Dorigo, Jean Wicht, Xiaoxue Han, Sebastiana Gianì, Liupan An, Ilya Komarov, Bastien Luca Muster, Frédéric Guillaume Dupertuis, Julien Rouvinet, Barinjaka Rakotomiaramanana, Pierre Jaton, Joël Bressieux, Raluca Anca Muresan, Songmei Wu, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Paolo Durante, Wenyu Zhang