En mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien.
Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace. La notation sous forme matricielle est plus particulièrement employée dans les bibliothèques de programmation graphique 3D telles que OpenGL et Direct3D.
Les coordonnées homogènes d'un point de l'espace projectif de dimension n sont écrites habituellement comme (x : y : z :... : w), un vecteur de longueur n+1, autre que (0 : 0 : 0 :... : 0). Deux ensembles de coordonnées qui sont proportionnels dénotent le même point d'espace projectif : pour tout scalaire non nul c pris du corps de base K, (cx : cy : cz :... : cw) est équivalent à (x, y, z, w). Ainsi, ce système de coordonnées introduit des classes d'équivalence constituées de vecteurs colinéaires. Prenant l'exemple de l'espace projectif de dimension trois, les coordonnées homogènes seront (x : y : z : w).
L'espace projectif construit permet de caractériser le plan à l'infini. Celui-ci est fréquemment défini par l'ensemble des points ou vecteurs ayant pour dernière coordonnée w = 0, appelés points à l'infini. Hors de ce plan, nous pouvons utiliser (x/w, y/w, z/w) comme un système cartésien ordinaire ; donc l'espace affine complémentaire au plan à l'infini est coordonné dans une forme familière, avec une base correspondant à (1 : 0 : 0 : 1), (0 : 1 : 0 : 1), (0 : 0 : 1 : 1).
Par exemple, si on veut déterminer l'intersection de deux plans définis par les équations x = w et x = 2w (dont la partie affine correspond aux deux plans parallèles au plan Oyz d'équations x = 1 et x = 2), on vérifie aisément l'équivalence avec w = 0 et x = 0.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Introduce the students to general relativity and its classical tests.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
August Ferdinand Möbius (, né le à Bad Kösen dans le village de Schulpforta, électorat de Saxe, Saint-Empire et mort le à Leipzig, fut un mathématicien et astronome théoricien à l'université de Leipzig. Fils unique de Johann Heinrich Möbius, professeur de danse à Schulpforta, le jeune August Ferdinand naît dans le village. Trois ans plus tard son père meurt, il est alors élevé par sa mère, descendante de Martin Luther, qui s'occupe directement de son éducation jusqu'à ce qu'il ait atteint l'âge de 13 ans, avant d'entrer lui-même à Schulpforta.
En mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
EPFL2022
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one -phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions n >= 3 is completely open. In this context, axial ...
This paper proposes a method for the construction of quadratic serendipity element (QSE) shape functions on planar convex and concave polygons. Existing approaches for constructing QSE shape functions are linear combinations of the pair-wise products of ge ...