Concept

Géométrie projective

Résumé
En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques. Mais on trouve déjà des notions projectives dans les œuvres de Pappus d'Alexandrie () qui introduit le rapport anharmonique et fait référence à Apollonius de Perga. L'œuvre de Desargues a peu de succès de son temps, et est oubliée jusqu’à sa redécouverte par l'éditeur et bibliophile Poudra au milieu du . Ses contemporains ne comprennent pas la profondeur de ses travaux, à l'exception du jeune Blaise Pascal, qui les poursuit, et démontre en particulier un théorème proche de celui aujourd'hui appelé théorème de Pascal. Poncelet réinvente la géométrie projective au début du , certainement influencé par la géométrie descriptive enseignée par son professeur à l'école polytechnique, Gaspard Monge. Il publie en 1822 le Traité des propriétés géométriques des figures. Indépendamment, un autre élève de Monge, Joseph Gergonne, découvre lui aussi à la même époque certains des principes de la géométrie projective. Poncelet et Gergonne, par des voies différentes, mettent en évidence le principe de dualité, propre à la géométrie projective, où, par exemple, deux droites distinctes du plan sont toujours sécantes, tout comme par deux points distincts passe toujours une droite. August Ferdinand Möbius en 1827 introduit les coordonnées homogènes qui permettent d'appliquer les méthodes de la géométrie analytique à la géométrie projective, travail auquel se consacre également Julius Plücker. Parallèlement, Jakob Steiner développe l'approche par la géométrie synthétique. Mais c'est Felix Klein qui, à la fin du , clarifie le lien entre géométrie projective et géométrie euclidienne, et montre comment les géométries non euclidiennes peuvent également se ramener à la géométrie projective.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.