En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale.
Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques. Mais on trouve déjà des notions projectives dans les œuvres de Pappus d'Alexandrie () qui introduit le rapport anharmonique et fait référence à Apollonius de Perga. L'œuvre de Desargues a peu de succès de son temps, et est oubliée jusqu’à sa redécouverte par l'éditeur et bibliophile Poudra au milieu du . Ses contemporains ne comprennent pas la profondeur de ses travaux, à l'exception du jeune Blaise Pascal, qui les poursuit, et démontre en particulier un théorème proche de celui aujourd'hui appelé théorème de Pascal.
Poncelet réinvente la géométrie projective au début du , certainement influencé par la géométrie descriptive enseignée par son professeur à l'école polytechnique, Gaspard Monge. Il publie en 1822 le Traité des propriétés géométriques des figures. Indépendamment, un autre élève de Monge, Joseph Gergonne, découvre lui aussi à la même époque certains des principes de la géométrie projective. Poncelet et Gergonne, par des voies différentes, mettent en évidence le principe de dualité, propre à la géométrie projective, où, par exemple, deux droites distinctes du plan sont toujours sécantes, tout comme par deux points distincts passe toujours une droite.
August Ferdinand Möbius en 1827 introduit les coordonnées homogènes qui permettent d'appliquer les méthodes de la géométrie analytique à la géométrie projective, travail auquel se consacre également Julius Plücker. Parallèlement, Jakob Steiner développe l'approche par la géométrie synthétique.
Mais c'est Felix Klein qui, à la fin du , clarifie le lien entre géométrie projective et géométrie euclidienne, et montre comment les géométries non euclidiennes peuvent également se ramener à la géométrie projective.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
En mathématiques, un espace projectif est le résultat d'une construction fondamentale qui consiste à rendre homogène un espace vectoriel, autrement dit à raisonner indépendamment des proportionnalités pour ne plus considérer que des directions. Par exemple, l'espace projectif réel de dimension n, P(R),ou RPn, est l'ensemble des droites vectorielles ou des directions de R ; formellement, c'est le quotient de R{0} par la relation d'équivalence de colinéarité. On peut munir ces espaces projectifs de structures additionnelles pour en faire des variétés.
En mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Couvre la topologie des surfaces de Riemann, en se concentrant sur l'orientation et l'orientabilité.
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Self-propelled particles such as bacteria or algae swimming through a fluid are non-equilibrium systems where particle motility breaks microscopic detailed balance, often resulting in large-scale collective motion. Previous theoretical work has identified ...
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...