Paramètre de formevignette|La loi Gamma est régie par deux paramètres de formes : k et θ. Un changement d'un de ces paramètres ne change pas seulement la position ou l'échelle de la distribution, mais également sa forme. Dans la théorie des probabilités et en statistiques, un paramètre de forme est un type de paramètre régissant une famille paramétrique de lois de probabilité. Un paramètre de forme est un paramètre d'une loi de probabilité qui n'est pas un paramètre affine, donc ni un paramètre de position ni un paramètre d'échelle.
Loi d'extremum généraliséeEn probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Moment (probabilités)En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.