Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Taux d'expansion (théorie des graphes)En mathématiques, et plus particulièrement en théorie des graphes, le taux d'expansion d'un graphe est une mesure de connectivité de ce graphe. Informellement, un grand taux d'expansion veut dire que n'importe quel sous-ensemble de sommets relativement petit possède beaucoup de connexions avec le reste du graphe. Cette mesure est surtout utilisée en raison des propriétés intéressantes des graphes ayant un fort taux d'expansion, parfois appelés graphes expanseurs. On les retrouve notamment en informatique théorique.
Algorithme de parcours en largeurL'algorithme de parcours en largeur (ou BFS, pour Breadth-First Search en anglais) permet le parcours d'un graphe ou d'un arbre de la manière suivante : on commence par explorer un nœud source, puis ses successeurs, puis les successeurs non explorés des successeurs, etc. L'algorithme de parcours en largeur permet de calculer les distances de tous les nœuds depuis un nœud source dans un graphe non pondéré (orienté ou non orienté). Il peut aussi servir à déterminer si un graphe non orienté est connexe.
Graphe étoilethumb|upright=3|Les graphes en étoile S3, S4, S5 et S6. En mathématiques, et plus particulièrement en théorie des graphes, une étoile Sk est le graphe biparti complet K1,k. On peut aussi le voir comme un arbre avec un nœud et k feuilles, du moins lorsque k > 1. Enfin, on peut le définir comme un graphe connexe dont tous les sommets sauf un sont de degré 1. Certains auteurs définissent toutefois Sk comme l'arbre à k sommets de diamètre maximal 2. Attention, avec cette définition, une étoile n'a que k − 1 feuilles.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Maximum cardinality matchingMaximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.