In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy.
The calculus of variations deals with functionals , where is some function space and . The main interest of the subject is to find minimizers for such functionals, that is, functions such that:
The standard tool for obtaining necessary conditions for a function to be a minimizer is the Euler–Lagrange equation. But seeking a minimizer amongst functions satisfying these may lead to false conclusions if the existence of a minimizer is not established beforehand.
The functional must be bounded from below to have a minimizer. This means
This condition is not enough to know that a minimizer exists, but it shows the existence of a minimizing sequence, that is, a sequence in such that
The direct method may be broken into the following steps
Take a minimizing sequence for .
Show that admits some subsequence , that converges to a with respect to a topology on .
Show that is sequentially lower semi-continuous with respect to the topology .
To see that this shows the existence of a minimizer, consider the following characterization of sequentially lower-semicontinuous functions.
The function is sequentially lower-semicontinuous if
for any convergent sequence in .
The conclusions follows from
in other words
The direct method may often be applied with success when the space is a subset of a separable reflexive Banach space . In this case the sequential Banach–Alaoglu theorem implies that any bounded sequence in has a subsequence that converges to some in with respect to the weak topology. If is sequentially closed in , so that is in , the direct method may be applied to a functional by showing
is bounded from below,
any minimizing sequence for is bounded, and
is weakly sequentially lower semi-continuous, i.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course complements the Analysis and Linear Algebra courses by providing further mathematical background and practice required for 3rd year physics courses, in particular electrodynamics and quant
Le calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
En analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
Using a variational method, we prove the existence of heteroclinic solutions for a 6-dimensional system of ordinary differential equations. We derive this system from the classical Benard-Rayleigh problem near the convective instability threshold. The cons ...
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure existence ...