Raoul BottRaoul Bott, né le et mort le , est un mathématicien connu pour nombre de contributions en géométrie. Né à Budapest, il passe l'essentiel de sa vie aux États-Unis. Sa famille émigre au Canada en 1938 à la veille de la Seconde Guerre mondiale. Il étudie à l'université McGill. Il devient professeur à Harvard en 1958, et il y enseigne jusqu'en 1999. Il meurt du cancer à San Diego en 2005. Son travail porte initialement sur la physique avant de se tourner vers les mathématiques pures.
Frank AdamsJohn Frank Adams ( – ) est un mathématicien britannique, l'un des fondateurs de la théorie de l'homotopie. Frank Adams est né à Woolwich, dans la banlieue sud-est de Londres. Il commence ses recherches au Trinity College de Cambridge auprès d'Abram Besicovitch, mais se réoriente rapidement vers la topologie algébrique. En 1956, il soutient à Cambridge un Ph. D., dirigé par Shaun Wylie et devient Fellow du Trinity. Une bourse lui permet de faire un séjour à l'université de Chicago et à l'IAS (Institute for Advanced Study) en 1957-1958 et il séjourne de nouveau à l'IAS en 1961.
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
Suite spectraleEn algèbre homologique et en topologie algébrique, une suite spectrale est une suite de modules différentiels (En,dn) tels que En+1 = H(En) = Ker dn / dn est l'homologie de En. Elles permettent donc de calculer des groupes d'homologie par approximations successives. Elles ont été introduites par Jean Leray en 1946. Il y a plusieurs manières en pratique pour obtenir une telle suite. Historiquement, depuis 1950, les arguments des suites spectrales ont été un outil performant pour la recherche, notamment dans la théorie de l'homotopie.