Résumé
vignette|Transport parallèle d'un vecteur autour d'une boucle fermée (de A à N à B et retour en A) sur une sphère. L'angle par lequel il a tourné est proportionnel à l'aire intérieure à la boucle. En mathématiques, et plus précisément en géométrie différentielle, le transport parallèle est une façon de définir une relation entre les géométries autour de points le long d'une courbe définie sur une surface, ou plus généralement sur une variété. Si la variété est munie d'une connexion affine (une dérivée covariante ou plus généralement une connexion sur le fibré tangent), alors cette connexion permet de transporter des vecteurs le long des courbes de telle sorte qu'ils restent « parallèles » par rapport à la connexion. Réciproquement, une notion de transport parallèle donne un moyen de relier les géométries de points voisins, et donc, en un certain sens, définit une connexion, qui est l'analogue infinitésimal du transport parallèle. Le transport parallèle définissant une réalisation locale de la connexion, il définit aussi une réalisation locale de la courbure connue sous le nom d'holonomie. Le théorème d'Ambrose-Singer explicite cette relation entre les deux notions. D'autres connexions admettent une forme de transport parallèle. Par exemple, une connexion de Koszul sur un fibré vectoriel permet le transport de façon analogue à l'utilisation d'une dérivée covariante. Une connexion d'Ehresmann permet de relever les courbes de la variété à l'espace total du fibré principal, ce qu'on peut interpréter comme un transport parallèle de référentiels. Soit M une variété différentielle, E→M un fibré vectoriel de dérivée covariante ∇ et γ: I→M une courbe lisse paramétrée par un intervalle ouvert I. Une section de le long de γ est dite parallèle si Soit un élément e0 ∈ EP à P = γ(0) ∈ M. Le transport parallèle de e0 le long de γ est l'extension de e0 à une section X le long de γ. Plus précisément, X est la seule section de E le long de γ telle que On peut remarquer que, localement, (1) définit une équation différentielle, avec les conditions initiales données par (2).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.