Concept

Application semi-linéaire

Résumé
En algèbre linéaire, en particulier en géométrie projective, une application semi-linéaire entre les espaces vectoriels V et W sur un corps K est une fonction qui est une application linéaire « à torsion près », donc semi -linéaire, où « torsion » signifie « automorphisme de corps de K ». Explicitement, c'est une application telle que : est additive par rapport à l'addition vectorielle : pour tous et de ; il existe un automorphisme de corps θ de K tel que , où est l'image du scalaire par l'automorphisme . Si un tel automorphisme existe et que T est non nul, il est unique ; on dit alors que T est θ-semi-linéaire. Si les espaces de départ et d'arrivée de T coïncident (c'est-à-dire ), on peut utiliser le terme de transformation semi-linéaire. Les transformations semi-linéaires inversibles d'un espace vectoriel V donné (pour tous les choix d'automorphisme de corps) forment un groupe, appelé groupe semi-linéaire général et noté par analogie avec et en prolongeant le groupe linéaire général. Le cas particulier où le corps est celui des nombres complexes et l'automorphisme est la conjugaison complexe, une application semi-linéaire est appelée une application antilinéaire. Des notations similaires (en remplaçant les lettres latines par des grecques) sont utilisées pour les analogues semi-linéaires de transformations linéaires plus restreinte ; formellement, le produit semi-direct d'un groupe linéaire avec le groupe de Galois d'automorphismes de corps. Par exemple, PΣU est utilisé pour les analogues semi-linéaires du groupe unitaire spécial projectif PSU. Il faut cependant noter, même si cela n'a été établi que récemment, que ces groupes semi-linéaires généralisés ne sont pas bien définis, comme indiqué dans : en effet, deux groupes classiques isomorphes G et H (sous-groupes de SL) peuvent avoir des extensions semi-linéaires non isomorphes. Au niveau des produits semi-directs, cela correspond à des actions différentes du groupe de Galois sur un groupe abstrait donné, vu qu'un produit semi-direct dépend de deux groupes et d'une action.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.