GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
GöttingenGöttingen (prononcé : ) aussi parfois nommée en français Gœttingue, Gœtting ou Gottingue (Chöttingen) est une ville d'Allemagne, dans le Land de Basse-Saxe, capitale du district du même nom. Elle se situe à mi-chemin entre Bonn et Berlin. Elle compte environ , dont . C'est un important centre universitaire. L'Université de Göttingen est l'une des plus célèbres d'Allemagne, avec et . 42 prix Nobel ont enseigné ou étudié à Göttingen. La ville abrite également la Bibliothèque de Basse-Saxe, ainsi que l'Institut Max-Planck et l'Académie des sciences.
Harold DavenportHarold Davenport (1907-1969) est un mathématicien britannique célèbre pour son travail en théorie des nombres. Né dans le village de Huncoat dans le Lancashire, il fait ses études à Accrington et au Trinity Collège de Cambridge. Sa thèse, dirigée par John Edensor Littlewood, porte sur la distribution des résidus quadratiques. En s'attaquant à la question des distributions, il tombe rapidement sur des problèmes qui sont considérés comme des cas particuliers de ceux qui se posent pour la fonction zêta locale dans le cas de certaines courbes hyperelliptiques telles que : Y2 = X(X − 1) (X − 2) .
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.