En mathématiques, le discriminant noté , ou le réalisant noté , est une notion algébrique. Il est utilisé pour résoudre des équations du second degré. Il se généralise pour des polynômes de degré > 0 quelconque et dont les coefficients sont choisis dans des ensembles munis d'une addition et d'une multiplication. Le discriminant apporte dans ce cadre une information sur l'existence ou l'absence de racine multiple.
Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques. Sa définition se fonde sur le calcul d'un déterminant.
L'histoire et la découverte du discriminant est un élément de l'histoire plus générale de l'algèbre et en particulier de la résolution des équations du second degré. Il apparait notamment lorsqu'on résout ces équations à l'aide d'identités remarquables.
Équation du second degré
Considérons une équation du second degré, ici a, b et c sont trois coefficients réels tel que a est différent de zéro :
La connaissance du discriminant permet de résoudre l'équation :
Dans ce dernier cas, le discriminant a toutefois une racine complexe et donc une solution complexe :
Racine d'un nombre complexe
Si les solutions nombres complexes de l'équation sont admises, ou si les coefficients a, b et c sont complexes, la situation est un peu différente. Le théorème de d'Alembert-Gauss précise qu'il existe toujours au moins une solution à l'équation. Dans l'ensemble des complexes, un nombre admet toujours deux racines carrées, il existe une valeur δ tel que son carré δ2 soit égal à Δ :
Le discriminant réduit apparait quand on écrit l'équation du second degré sous la forme
par un changement de variable
Dans ce cas les "2" et "4" apparaissant dans l’expression des solutions et du discriminant se simplifient et on obtient :
L'expression des racines, si elles existent, devient :
Cherchons à résoudre l'équation suivante :
Le calcul du discriminant Δ et des racines x1 et x2 donne :
Dans le cas de l'équation suivante, le discriminant réduit est nul et il n'existe qu'une racine, égale à –3.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research. On the one hand, parity-time- (PT-) and anti-PT-symmetric physics have gained ever-growing interest, due to the existence of non-Hermitian sp ...
Without resorting to complex numbers or any advanced topological arguments, we show that any real polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent to the fundamental theorem of algebra. The proof uses ...
CAMBRIDGE UNIV PRESS2021
,
We introduce several spatially adaptive model order reduction approaches tailored to non-coercive elliptic boundary value problems, specifically, parametric-in-frequency Helmholtz problems. The offline information is computed by means of adaptive finite el ...