Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de l'apprentissage automatique, en mettant l'accent sur l'utilisation de Piazza pour les communications liées à la classe et les exercices pratiques en Python.
Explore les modèles linéaires, la régression, la prédiction multi-sorties, la classification, la non-linéarité et l'optimisation basée sur le gradient.
Explore les applications de la chimie quantique, en mettant l'accent sur le rôle de la densité électronique dans la prédiction des propriétés chimiques et en abordant les défis de la conception des catalyseurs, de la conversion de l'énergie solaire et de la synthèse des médicaments.
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.